
PULLING UP YOUR LEGACY
APP BY ITS BOOTSTRAPS

by Emily Stamey

https://joind.in/talk/30b5f

© PHOTO BY MATT STAUFFER

1

https://joind.in/talk/30b5f
https://mattstauffer.co/

Our Team for this project:

3 developers
1 project
manager
1 UX
professional

Our applications support the
College of Engineering, mostly

outside of the classroom

We maintain 70 legacy applications

2

3

It's harder to read code than to write it. This is why

code reuse is so hard. ­ Joel Spolsky

4

Everybody likes to write reusable code, and no one
wants to reuse anybody else's code.

­ Kurt Koppelman (@moonhead)

5

BOOTSTRAPPING IS IMPORTANT

We support legacy applications, some very old

Updating spaghetti codebases is RISKY

Rewriting large legacy applications is TIME
CONSUMING

Bootstrapping meets you in the middle

6

7

LEGACY SOFTWARE
Soʿware developed using older
technologies and practices
It can be difficult to replace
because of its wide use.

Oʿen a negative term
Referencing a system as "legacy" oʿen implies that the system is out
of date or in need of replacement.

8

SPAGHETTI CODE
The relationships between pieces of

code are so tangled, it’s nearly
impossible to add or change

something without unpredictably
breaking something.

9

REFACTOR
Technique for restructuring an existing body of code, altering its internal

structure without changing its external behavior.

10

TECHNICAL DEBT
A metaphor referring to the eventual consequences of any system design,

soʿware architecture or soʿware development within a codebase.

11

HOW TO MAKE TECHNICAL DEBT
Leave a codebase untouched
Develop under a tight deadline
Let novice programmers build
it
Maintain by multiple
developers
Change goals of the app

12

BOOTSTRAPPING (SOFTWARE)

Building onto an existing system
for the purpose of improvement
with the least amount of sweat

equity and development cost in the
process.

© PHOTO BY @GOATUSERSTORIES

13

http://twitter.com/goatuseruserstories

14

15 . 1

15 . 2

15 . 3

15 . 4

15 . 5

16

17

SURVEY YOUR APPLICATION

1. Talk to users of the
application

2. Study the codebase

3. Examine the new feature
requests

18 . 1

SURVEY YOUR APPLICATION

1. Talk to users of the
application

2. Study the codebase

3. Examine the new feature
requests

18 . 2

TALK TO USERS

1. Is their process consistent with the
application?

2. What are the pain points?

3. Do they have concerns with the
application?

Don’t rely on developer feedback

19

USER FEEDBACK: PROCESS
Process was inconsistent with the application

Language of the customer was different from the
application
Selection Committee used spreadsheet to manage budgets
Candidates were added to a spreadsheet
(Scholarship Account, Student ID, Amount, Term)

20

USER FEEDBACK: PAIN POINTS
Process exited and re-entered the system through spreadsheets

High Margin of Error

21

USER FEEDBACK: CONCERNS

Many awards were rejected by Financial Aid

Didn’t trust that the best candidates were being
chosen

Scoring algorithm was not clear/effective

Multiple majors weren't allowed

NOT ALL MONEY WAS BEING AWARDED

MONEY LEFT UN-GIVEN ⇒ ANGRY DONORS

22

SURVEY YOUR APPLICATION

1. Talk to users of the
application

2. Study the codebase

3. Examine the new feature
requests

23

STUDY THE CODEBASE

Talk to past/current developers

Verify functionality does what everyone thinks it
does

Look for entanglements

24

CODEBASE OF SCHOLARSHIPS

Large App model

SQL queries, only slightly dynamic

Functions weren’t single-purpose

No Bounded Contexts between Students, Selection, and
Foundation

25

CODEBASE OF SCHOLARSHIP

Student application data was a single row in table

Academic information wasn’t updated when it
changed

Major was a single column in that row

26

SURVEY YOUR APPLICATION

1. Study the codebase

2. Talk to users of the
application

3. Examine the new feature
requests

27

EXAMINE NEW FEATURE REQUESTS

What new features are needed?

How they might be
implemented?

28

NEW FEATURES: SCHOLARSHIPS

Explicit criteria matching, excluded non-matching applicants

Current student data, query their GPA, Major, etc at time of
selection

Students have multiple majors

29

BEFORE YOU START

Is there another application that
can do what it does? Is it better?

Is this a worthwhile investment?

If so, what are the Most Valuable
Features?

30

INCLUDE USERS IN
DECISIONS

Explain why this work is
necessary

Be open about errors in the
application

Build trust from the beginning

31

SET EXPECTATIONS

Customer has an open door to
you

add work from the side

change processes

Keep the door open anyway!

32

PRIORITIZE AND SCOPE WORK

Bootstrapping grows FAST!

require more people to be
engaged in the process

wear people down over time

Scope the work you are agreeing
to do

33

PLANNING WORK FOR SCHOLARSHIPS

Divided the application based on timeline

we didn't scope the work

34

35

MITIGATE RISK
© PHOTO OF NIAMH - ACROBAT

36

http://ents-rep.com/artists/niamh-hand-balance-london/

STABILIZE THE CODE
Version control

Stabilize the code base and
preserves history

Development and Staging
environments

No more developing in
production!!!!
Created fake student data

37

TEST EVERYTHING YOU NEED TO KEEP

Acceptance tests stabilize
functionality you need to keep

Hooked testing interfaces into
framework

Used Codeception to view
contents of the pages

Unit and Functional tests for
everything you build

38

COMPOSER
Allowed us to use libraries
Checked `composer.json` and
`composer.lock` into git
added `/vendor` to the
`.gitignore` file

39 . 1

COMPOSER PACKAGES
Testing with Codeception,
PHPUnit, Mockery
Twig templates
Pimple container
Illuminate database (Eloquent)
Phinx for database migrations

39 . 2

COMPOSER REQUIRE
{
 "name": "itecs/scholarships",
 "description": "Scholarships application for the College of Engineering.",
 "require": {
 "php": ">=5.3.3",
 "robmorgan/phinx": "*",
 "pimple/pimple": "~3.0",
 "ncsu/auth": "dev­master"
 },
 "require­dev": {
 "codeception/codeception": "2.0.*"
 }
 ...
}

39 . 3

DATABASE MIGRATIONS: PHINX

Allows you to change DB across environments

Gives you power to undo the change if there is a
problem

$ vendor/bin/phinx create CreateUserLoginsTable

40 . 1

<?php
 use Phinx\Migration\AbstractMigration;

 class CreateUserLoginsTable extends AbstractMigration
 {
 public function up()
 {
 $table = $this­>table('users');
 $table­>renameColumn('bio', 'biography');
 }

 public function down()
 {
 $table = $this­>table('users');
 $table­>renameColumn('biography', 'bio');
 }
$ vendor/bin/phinx migrate

$ vendor/bin/phinx rollback

40 . 2

<?php
use Phinx\Migration\AbstractMigration;

class CreateUserLoginsTable extends AbstractMigration
{
 public function change()
 {
 // create the table
 $table = $this­>table('user_logins');
 $table­>addColumn('user_id', 'integer')
 ­>addColumn('created', 'datetime')
 ­>create();
 }
}

$ vendor/bin/phinx migrate

$ vendor/bin/phinx rollback

40 . 3

THE GOOD STUFF

41 . 1

BOOTSTRAPPING: FILETREE

new code in '/src' alongside the '/app' directory

41 . 2

BOOTSTRAPPING: NAMESPACES
'/src' is given a namespace
namespaces are autoloaded in
composer

{
 "name": "itecs/scholarships",
 "description": "Scholarships application for the College of Engineering.",
 ...
 "autoload": {
 "psr­4": {
 "ITECS\\Scholarships\\": ["src/", "app/core/"],
 "Codeception\\Module\\": "src/",
 "Tests\\Substitute\\": "tests/_helpers/"
 }
 }
}

41 . 3

BOOTSTRAPPING: NAMESPACED CLASS
This allows us to reference a class like:

ITECS\Scholarships\Common\Services\GPAService

<?php

namespace ITECS\Scholarships\Common\Services;

use ITECS\Scholarships\Common\Values\GPA;
use ITECS\Scholarships\StudentApplication\Domain\Student\StudentId;

interface GpaService
{

 /**
 * @param StudentId $studentId
 *
 * @return GPA
 */
 public function findGpaFor(StudentId $studentId);

41 . 4

41 . 5

EVENTS

Student Submitted Application

Budget Allocated To
Scholarship

Award Was Given To Student

41 . 6

DEPENDENCY INJECTION

42 . 1

DEPENDENCIES

The dependencies are the objects your class needs to function

GPAService needed a DB connection

42 . 2

INJECT THE DEPENDENCIES

Instantiate the dependency as a parameter in the constructor or use a
setter

function __construct(Database $database)
{
 $this­>database = $database;
}

42 . 3

DEPENDENCY INJECTION
Decouples our code from low level implementation
details
Instantiate our classes with their dependencies
AND instantiate those dependencies

42 . 4

DEPENDENCY INJECTION CONTAINER
A map of dependencies your class needs along with the logic to create
those dependencies if they haven't been created yet
Can resolve complex dependencies transparently
Modular when you need to swap a dependency, only update the
container

42 . 5

PIMPLE
Create your container by instantiating the Pimple
class

42 . 6

BASE CONTROLLER
<?php

namespace ITECS\Scholarships;

use \ReflectionClass;
use \Log;

/**
* Base Application Controller Class
*
*/
class BaseController extends \Controller {

 const BAD_REQUEST=400;
 const FORBIDDEN=403;

42 . 7

'APP/SERVICES.PHP'

<?php

 use Pimple\Container;
 use Illuminate\Database\Capsule\Manager as Capsule;

 $container = new Container();

 $container['config'] = require_once('config.php');

 $container['database'] = function ($c) {
 $capsule = new Capsule;

 // PHP 5.3 doesn't do array de­referencing.
 // @todo update for php54
 $config = $c['config'];

42 . 8

CONFIGURATION FILE

DB connections

Base URL

Set paths to twig templates

Customize Notice messages

Set config variables for
services

42 . 9

CONFIGURATION FILE
'/app/config.php'

We passed this array into a $container['config'] variable

<?php
 return array(
 /* base url for path in the site */
 'app' => array(
 'base_url' => sprintf('http://localhost:%s/', isset($_SERVER['SERVER_PORT'])
 ? $_SERVER['SERVER_PORT'] : ''),
 'index_page' => 'index.php/',
 'debug' => FALSE
),

 /* DB configuration */
 'db' => array(
 'default' => array(
 'hostname' => "local__server",
 'port' => "3306",

42 . 10

BOOTSTRAPPING: CONNECTING TO THE FRAMEWORK

'/app/controllers'
new controllers for the new functionality

'/app/services.php'
defined and configured twig, database, et al
required in the CI index.php file

'/app/bindings.php'
the roadmap of our new code and dependencies
required in the '/app/services.php' file

43

CONTAINER
'/app/bindings.php'

<?php

 /* example one */

 use Scholarships\Selection\Services\IlluminateDatabaseGpaService;

 $container['Scholarships\Common\Services\GpaService'] = function($c) {
 return new IlluminateDatabaseGpaService($c['database']);
 };

44

CONTAINER
'/app/bindings.php'

<?php

/* example two */

use Scholarships\Selection\ApplicantQueryService;

$container['Scholarships\Selection\ApplicantQueryService'] = function($c) {
 return new ApplicantQueryService(
 $c['Scholarships\StudentApplication\StudentQueryService'],
 $c['Scholarships\Common\Services\ResidenciesService'],
 $c['Scholarships\Common\Services\GpaService'],
 $c['Scholarships\Common\Services\UnmetNeedService'],
 $c['Scholarships\Common\Services\CandidateQualificationService']
);
};

45

CONTROLLERS
<?php

class Selectionnext extends BaseController
{
 public function Selectionnext()
 {
 parent::BaseController();

 $this­>scholarshipRepository = $this­>container['Scholarships\Selection\Scholarship\ScholarshipRepository'];
 $this­>collaborationsService = $this­>container['Scholarships\Selection\CollaborationsService'];
 $this­>committeeService = $this­>container['Scholarships\Selection\CommitteeService'];
 $this­>authService = $this­>container['Scholarships\IdentityAccess\AuthenticationService'];
 $this­>awardsService = $this­>container['Scholarships\Selection\Scholarship\AwardsService'];
 $this­>events = $this­>container['Scholarships\Support\Events\EventStore'];
 }

46 . 1

47

SUMMARY: SCHOLARSHIP WINS!
Implemented multiple majors successfully
Eliminated unqualified candidates

made the scoring easier to read
reduced the manual review of candidates

Selection process was entirely inside the
application

48 . 1

SUMMARY: SCHOLARSHIP WINS!
Restored confidence in selection process!
Fewer awards were rejected!
More Scholarship Money was awarded in the application than ever
before!

By May 2015: Approximately $1,074,394 Awarded

48 . 2

SUMMARY: LESSONS LEARNED

Tight deadlines with un-scoped work, we created technical debt that we
would have to address in the next academic year

48 . 3

SUMMARY: LESSONS LEARNED
Bootstrapping Legacy Apps
Event Sourcing
Domain-Driven Design
Command Query Response
Segregation
Project Management
A LOT!

48 . 4

SUMMARY: ACCOMPLISHMENTS
Replaced the full Student Application
Replaced the Selection Process with improved
functionality
Built Event-sourced distribution of scholarship money

49 . 1

OLD SELECTION INTERFACE

49 . 2

NEW SELECTION INTERFACE

49 . 3

PLANNING: YEAR TWO
Rollover between Academic years
The Scholarship CRUD
Beginning of the year Fund
allocations
Increase/Decrease of Funds

50

51

WHAT NOW?
Backed up and removed all events from the previous year
Minor code improvements
Just completed the second year's primary selection window
Two years of selection until Academic Works could get up and
running
Academic Works is online.

52

Recommended reading

Blog with Bootstrapping details:

 - Anthony Ferrara

elstamey.com
Paying Technical Debt
Dependency Injection

53

http://www.elstamey.com/
http://blog.intracto.com/paying-technical-debt-how-to-rescue-legacy-code-through-refactoring
https://www.youtube.com/watch?v=IKD2-MAkXyQ&spfreload=5

@elstamey https://joind.in/talk/30b5f

THANK YOU!
Emily Stamey

Twitter:

Joind.in:

@elstamey

https://joind.in/talk/30b5f

54

https://joind.in/talk/30b5f
https://twitter.com/elstamey
https://joind.in/talk/30b5f

