Hey, BossY

E vENT SooRCING
Cany Fix Tunt Y

¢)

Ervay StameY

@elstamey

RALEIGH/DURHAM® l

‘ USER GROUP

| LOVE LEGACY!

LEARNING OBJECTIVES

e Basics of Event Sourcing using an example of a library (the kind where
you check out books)

e Three projects | have worked on and the ways we used Event Sourcing
on them

BEFORE WE BEGIN

Learning Event-Sourcing (or DDD) is tough! i
Be kind to learners (including yourself)

Event-Sourcing isn't for your whole application

EVENT SOURCING

The fundamental idea of Event Sourcing is that of ensuring every change
to the state of an application is captured in an event object, and that
these event objects are themselves stored in the sequence they were
applied for the same lifetime as the application state itself.

Martin Fowler

EVENTS AND LISTENERS

ot i
e

o

AN EVENT

What happened?
BookWasCheckedOut

What do | need to remember about
it?
(book, patron, date)

EVENT ATTRIBUTES

e Save only what you need to
preserve
e The rest can be looked up

(book id, patron id, date)

EVENT CLASS

<?php
namespace Library\Events;
use Library\Support\Event;

class BookWasCheckedOut
{

/~k~k
* @var DateTime
*/
protected $checkoutDate;

RULES FOR EVENTS

Usually named as past-tense verbs

RARELY changed

Never deleted

Has attributes that are values

m not model, object, collection, or aggregate root

NEVER DELETE EvenTts

DON'T STORE OBJECTS

oO®3IeCTad OBJECT A
® e ® e
A
povED

ATTR\BUTE

IF WE STORED OBJECTS IN AN EVENT...

YOU WERE SO PREOCCUPIED WITH WHETHER OR NOT YOU COULD

Y[Iiillll]ll"l' STOP TO THINK IF Yllll SHOULD

EVENTS RARELY CHANGE

e The part of the code that will change is most likely the result that
follows that event.

e The structure of the resulting data is more likely to change than the
thing that happened

L\STENER RESULT

PPeLY EVENTO

ESULT

LISTENER, RESLLT
PeeLy ENenT()

L\STENER RESULT

PPeLY EVENTO

L\STENER, RESLLT
PeeLy ENenT()

REASONS TO USE EVENTS

State transitions are important

We need an audit log, proof of the state we are currently in

The history of what happened is more important than the current state
Events are replayable if behavior in your application changes

. DoMAN MESSAGE

ID (LLID)

NrE
PpYLDAD —» 4 TVE

TIMESTRMP EVENT
JERS\ON

EVENT STORE

e Domain-specific database
e Based on a Publish-Subscribe message pattern

PROJECTOR

namespace Library\ReadModel;

<?php

use Library\Events\BookWasCheckedIn;

use Library\Events\BookWasCheckedOut;

use Library\Events\BookAddedToBookshelf;
use App\Support\ReadModel\Replayable;

use App\Support\ReadModel\SimpleProjector;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Connection;

class BookshelfProjector extends SimpleProjector implements Replayable

{

A set of event handlers that work together to build and maintain a table
to be accessed by the read model.

READ MODEL

READ MODEL

namespace Library\ReadModel;

<?php

use Carbon\Carbon;
use Illuminate\Database\Elogquent\Model;

/~k~k
* @codeCoveragelIgnore
*/
class Bookshelf extends Model
{
protected Stable = 'proj bookshelf';

nihlic Sincrementina = false:

CREATING THE EVENTS

e An event is created only after validation
m Directly in a controller 'checkout' method
m Using a Check Out Book Command and Handler

CQRS
COMMAND AND QUERY RESPONSE SEGREGATION

An application architecture pattern commonly used with event
sourcing

CQRS involves splitting an application into two parts internally.

CQRS

e Command is any method that mutates state

e Query is any method that returns a value

e Should only be used on specific portions of a system, not the system
as a whole

COMMAND HANDLER

1. Validate the command on its own merits.

2. Validate the command on the current state of the aggregate.

3. If validation is successful, create an event(s)

4, Attempt to persist the new events. If there's a concurrency conflict

during this step, retry or exit.

COMMAND HANDLER EXAMPLE

public function update (Request S$request)
{
// Srequest has book id, patron id

try {

Scommand = new CheckOutBook ($request->bookId, S$request->patronId);
Sthis->bookLendingService->handleCheckOutBook ($command) ;

} catch (InvalidUserException $e) {

return response () ->json("Not authorized to check out a book.", Response::HTTP_F
} catch (BookUnavailableException S$e) {

return response()->json("Book was not available to be checked out", 400);

OPTIMIZE

e Separate the load from reads and writes allowing you to scale each
independently.
m All commands go into a WriteService
m All queries go into a ReadService

YOU CAN CHOOSE WHICH IS BEST

CRUD

Event-Sourcing T~ > THE POWER

Event-Sourcing with CQRS (G IS YOURS!
2 S

Event-Sourcing, CQRS, DDD

MY PROJECTS

e Scholarships
e Course Registration
e Threat Reports

STUDENT \
/ FINANCIAL
AID
SCHOLARSHIP
SELECTION

AN

ENGINEERING
FOUNDATION @DONOR

S

STUDENT

FINANCIAL
AID

SCHOLARSHIP

ENGINEERINF %
FOUNDATION @ DONOR

SELECTION
COMMITTEE
STUDENTS

FLEXIBLE TO CHANGES

e Selection Committee would never take away an award
m until they did
e New academic year, new event store

SCHOLARSHIPS WRAP-UP

e Modernized the code in pieces
e View events from multiple contexts
e Flexible to changesin the application

STUDENT ENROLLMENT
PROCESS

e For Distance Education Students in the College of Engineering
e Rewrote Application

e ES to follow the process

e Status drop-down versus events

BEGAN WITH PAPER FORMS

A lot of our systems were built to
replace paper processes

They often closely map to this
physical form.

© PHOTO BY AIDAN MORGAN

PAPER FORMS HANDLING STATE

Status labels are like a rubber stamp

Status doesn't always communicate
why or what happened

M

HOW WORKFLOWS BECOME COMPLEX

& p&:;i@ _Egﬁcp«sws

& AcpoE™IC
OWW\D{ e
SN

PAPER FORMS HANDLING STATE

Piles indicate status of the form

A SIMPLE STATUS DROP-DOWN

A "SIMPLE" STATUS DROP-DOWN

RECEIVED

CANCELLED

COURSE CANCELLED

COURSE NOT APPROVED

CPC DENIED

CPC NOT APPROVED

CPC PENDING TRANSCRIPT

CPC PROCESSING

DENIED

DROPPED AFTER CENSUS
DROPPED BEFORE CLASSES BEGUN
DROPPED BETWEEN BEGINNING OF CLASS AND CENSUS DATE
DROPS/WITHDRAWALS AT SITES
ECE ON CAMPUS STUDENTS
ENROLLMENT CANCELLED

EOL APPROVED

EOL MISC

NEW STUDENT REGISTRATION
PENDING ON CAMPUS REQUEST
ON CAMPUS STUDENT NOT APPROVED
PENDING CASHIER HOLD

PENDING EOL APPROVAL

PENDING INSTRUCTOR APPROVAL
PENDING INTERNATIONAL STUDENT
PENDING NDS OPEN ENROLLMENT
PENDING OIS VISA STUDENT
PENDING PERMANENT RESIDENT
PENDING TERM ADVISEMENT HOLD
PENDING TRANSCRIPT

PENDING TUITION PREPAYMENT
PREAPPROVED RETURNING
PROCESSING NDS

PROCESSING SITE

PROCESSING Z

PROJECT MESSAGE - MAE 586
PROJECT MESSAGE - NE 693
REGISTERED

REGISTERED ASHEVILLE
REGISTERED HAVELOCK
REGISTERED WILMINGTON

SITE APPROVAL: ASHEVILLE

SITE APPROVAL: HAVELOCK

SITE APPROVAL: WILMINGTON

SOMETHING HAPPENED

Status is a reflection of something
that happened

There is ONE of each status +
reasons/details

Events can record what happened

. ¢

a A7

STODENTS
AOMINS
* 9

\
Stosens T
INFORMATION

SYsTEMNM

7
J
¥

STUDENT oY SoenNT
REQUESTED S RoLLED
EnroL MENT &Y 4 C -
CLAS
P I)
= ER
“TuvtoN

WoLD REMOVED

STUDENT ENROLLMENT WRAP-UP

e Streamlined Process
e Connected the system to Student Information System
e Facilitated communication between students and admins

How It Works

SOC oriented tool designed by SOC analysts for SOC analysts. Primary deployment today is within the US federal government.

~ Network /) Internet
31101 01111001 00100000 01100001 01001101 01111001 00100000 01
O €
“ T ke [) =
TAP P .
J‘Files

z | d Hashes
75657349 6E51 75! Ps

InQuest Artifact 4 URLs
Collector
Extractor Mail & Wep Headers

@

InQuest
Manager |=0) API

5175657349 6E517

175657349 6E517

Ll L}
. 1 1
DD F.'Ie Heuristics n 1
SYSLOG: CEF Inspection N Ty p— 1
Thiresn Machine : % Multi AV 1 : & Sandbox : :
o Detection Learning | Integration(s) | i Integration(s) .
v amma@uann 'amam ---
Y File & API Reputation

' § '
sy ;
" Neeil
4)9 -
) —N 0

Threat Score

User

ANALYSIS

%%*&w-

DATA FILTERED FOR USER ACCESS

INQUEST WRAP-UP

Events created by the Engine; used in Customer-facing Site

Events capture Session Threat History

Optimize the results for Read, reducing time to retrieve large amounts
of data

Results are still filtered by a user's access

Full audit log

These events will lead to more improvements

PLANNED IMPROVEMENTS

e Fewer complex DB queries

e Could separate us from older schema; or reduce dependence on it
e Separate the logic of what an event means based on context and
purpose

Flexible to change, our interpretation of events can change, and we
can rebuild projections without losing the full history

THANK YOU!

EXPLORE DDD

CONFERENCE
DENVER | 2019

SEPT 16-20
exploreddd.com

EMILY STAMEY

@ELSTAMEY
HTTP://ELSTAMEY.COM

